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Enhancement of Diastereomer Selectivity Using Highly-Oriented Polymer Stationary Phase
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Enantiomer separation has been often realized with
reversed phase liquid chromatography using diastereomerizing
reagents with simply-hydrophobized silica. The present study
demonstrates that diastereomer selectivity can be enhanced
through highly-oriented organic phase produced by achiral
poly(octadecyl acrylate)-grafted on silica and a carbonyl-π
interaction due to the acrylate moiety is effective as the driving
force for the selectivity enhancement.  

Diasteromerization of enantiomeric isomers is very effec-
tive for chiral separation. When this technique is combined
with reversed-phase liquid chromatography (RPLC) system, it
yields very convenient analysis of enantiomer mixtures. Many
diasteromerizing reagents have been developed.1-7 These dias-
teromerizing reagents are characterized by the facts that chro-
mophoric groups are included for sensitive detection and chiral
separations are carried out by discriminating the hydrophobici-
ty (or polarity) differences among the resulting diastereomers.
Therefore, simply-hydrophobized silica such as octadecylated
silica (ODS) has been often used for stationary phase of liquid
chromatography. However, ODS usually shows low selectivity
because the hydrophobicity difference among the diastere-
omers is small and ODS recognize mainly molecular
hydrophobicity.

In this study, we focus on the fact that usual diasteremeriz-
ing reagents possess aromatic π-electrons which are useful as a
π−π interaction source.  In this communication, we report for
the first time that poly(long-chain alkyl acrylate) with car-
bonyl-π electrons enhances diastereomer selectivity in RPLC
mode and that it is brought only by high orientation of the
polymer (schematically illustrated in Figure 2a).

(S)-(-)-(2,3-Naphthalenedicarboximidyl)propionyl fluoride
(Nip-F)4 is a commercially available diastereomerizing reagent
for chiral separation against optically active amines. When the
diastereomers of (R)- and (S)-phenylethylamines with (S)-Nip-
F were analyzed by monomeric ODS8 in methanol-water (45 :
55) at 20 ˚C, the separation factor (α) of 1.06 was obtained
(Figure 1). This value is closed to that in the literature.4 On the
other hand, poly(octadecyl acryalate)-grafted silica8 (Sil-
ODA24) provided a better α value (1.12) in the same condition

than that of ODS (Figure 1). It was also observed that the α
value was remarkably dependent on temperature: at 0 – 60 ˚C,
α = 1.16 – 1.01 in Sil-ODA24 (Figure 2) and 1.09 – 1.01 in
ODS.  The detailed temperature dependence shows more sig-
nificant information on understanding the enhancement mech-
anism. Figure 2 also indicates the selectivity enhancement
compared with ODS. It is clear that distinct selectivity
enhancement is observed only at temperature below 45 ˚C
showing 1.8 – 2.2 times higher selectivity at 0 – 40 ˚C than
those on ODS. To explain the distinct selectivity-jump at tem-
perature around 45 ˚C in Figure 2, we detected that the silica-
supported ODA24 had significant change in the physical state
at the temperature.  Differential scanning calorimetry (DSC)
indicated that the immobilized ODA24 underwent a phase tran-
sition at temperature around 42 ˚C (Tc, peak-top temperature)
in methanol-water (45 : 55).  A polarization microscopic
observation of ODA24 showed that a crystalline-to-isotropic
phase transition was included at temperature around Tc.  In
addition, X-ray diffraction (4.16 Å with 2θ = 21.3˚) in the sili-
ca-supported ODA24 provided similar patterns to non-support-
ed ODA24 (4.15 Å with 2θ = 21.4˚).  These results indicate
that the selectivity enhancement of Sil-ODA24 is realized at
the highly-oriented structure of the immobilized phase. 

To clarify the importance of the phase transition of the
immobilized phase, the diastereomer selectivity was investi-
gated with Sil-MA21 and Sil-DCA21 onto which poly(methyl
acrylate) and poly(docosadecyl acrylate) were grafted. The
former Sil-MA21 is always in an isotropic state at 0 – 60 ˚C.
As a result, Sil-MA21 showed no diastereomer separation for
the Nip-isomers (α = 1.0 at 0 − 60 ˚C).  On the contrary, Sil-
DCA21 with longer alkyl chains than Sil-ODA24 showed
slightly higher selectivity (α = 1.18 and 1.06 at 0 and 45 ˚C)
than Sil-ODA24 (α = 1.16 and 1.03 at 0 and 45 ˚C). DSC
measurement showed that the immobilized DCA21 underwent
a crystalline-to-isotropic phase transition at temperature
around 58 ˚C (a peak-top temperature) in methanol-water (45 :
55). This higher Tc than that of Sil-ODA24 (42 ˚C) indicates
that the DCA21 can maintain a highly-oriented structure even
at higher temperature. Thease results strongly suggest that a
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crystalline state of the immobilized phase is essential to pro-
duce the selectivity enhancement.

We also investigated the effect of carbonyl groups because
the structural difference between Sil-ODA24 and ODS is char-
acterized by them and a carbonyl π – benzene π interaction is
effective for selectivity.9,11 Here, if acetonitrile as a π-electron-
containing medium was used instead of methanol, the α value
decreased as shown in Figure 2.  The value of 1.10 at 0 ˚C
almost agreed with that in ODS at 0 ˚C (α = 1.09). Similar
decrease of the selectivity was observed in acetone with π-
electrons but not observed in 2-propanol.  On the other hand, a
DSC observation showed no significant difference in the phase
transition behavior with acetonitrile. These results indicate that
π-electron-containing media work as inhibitors for diastere-
omer selectivity regardless of the fact that the immobilized
phase is in a crystalline state. These results show that the high-
er diastereomer separation can be realized both when the
organic phase is in a highly-oriented state such as a crystalline
state and a π-electron containing-solvent such as acetonitrile is
not included in a mobile phase.

In our recent study, we have described that ODAn which is
in a crystalline state showed molecular planarity recognition
against polyaromatic hydrocarbons9,10 and this ability would be
realized through a carbonyl-π interaction.9,11 However, there is
no theoretical investigation. In this study, a carbonyl-π com-
plex was evaluated against a formaldehyde-benzene complex
model without solvent by the ab initio MO/MP2 calculations
which were performed with Gaussian 94 package. The binding
energy was calculated as a function of distance R between the
carbon atom of formaldehyde and benzene plane, in which
formaldehyde was moved perpendicularly to the benzene plane
(plane-to-plane interaction) with the orientation fixed to that of
the optimized geometry. According to our calculation result, a

formaldehyde-benzene interaction (1.83 kcal mol-1) is more
effective compared with CH4-benzene12 (0.57 kcal mol-1) and
benzene-benzene12 (0.49 and 1.78 kcal mol-1 in the parallel and
perpendicular interactions, respectively) complexes. Therefore,
we estimate that the diastereomer selectivity enhancement
through Sil-ODA24 and Sil-DCA21 are brought with a π−π
interaction due to carbonyl groups on a highly-oriented struc-
ture. As shown in Figure 3, the planar structure of the S-S iso-
mer provides more suitable conformation for multiple interac-
tions between the highly-oriented carbonyl groups and the aro-
matic π-electrons than that of the twisted S-R isomer. 
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